CS 4530: Fundamentals of Software Engineering
Lesson 2.2 The Architectural Scale

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

* At the end of this lesson, you should be able to

* Give 5 examples of software architectural styles and
their distinguishing characteristics

* Draw a picture or give an example to illustrate each one

The Architectural Scale

* key questions: what are the
pieces? how do they fit
together to form a coherent
whole?

"-. \ \ :- T - J_,. plasiey . 5
N oY g : : :
\ . o - . Mg g N
=% " iy s -2 IR - T e -
= “'V Bldgs BE-C 8 o= g -
"~ B o e] & hi -‘— - 3

Wy Py o
A e R S

L e

What do we learn at this scale?

* Knowing the top-level organization gives you the
first clue about
* how to understand the system
* where to look for bugs or explain behaviors
* how to organize into teams
* how to find modification and extension points

Examples of Architectural Styles

1. Object-oriented
Layered
Pipeline
Microkernel

A

Event-driven

Example 1: Object-Oriented Architecture

* The pieces of the program correspond to entities in the
real world.

* Properties & operations correspond to operations in
the real world

* Example: solitaire:

* Entities:
e card
* pile
* layout

* Operations:
e find the number and suit of a card
* move a card from one pile to another
e check to see if a given move is legal
* check to see if the layout is in a winning state

Example 2: Layered Architecture

* The pieces correspond to

level of concern. yd

* Each layer depends on D tation |
services from the layer \ resentation Layer
or layers below r -~]

* Organize teams by Layer USINESS Layer

* different layers require f :
different expertise \ Persistence Layer

* When the layers are run (

on separate pieces of L Database Layer

hardware, they are
sometimes called "tiers"

Layered Architecture (contd)

 Typical organization for

operating systems DN
° Layers communicate User Program
through procedure calls and /O Management
callbacks (sometimes called Device Driver
"up-calls") Memory Management
Process Allocation multiprogramming
Hardware

Example 3: Pipeline Architecture

* The pieces correspond to stages in

the transformation of data in the
system

* Good for complex straight-line
processes, e.g. image processing

A
Vertex Processing

Ours

=

b
-

I Primitive Processing

|

Rasterizer

Fragment Processing ‘

A Simple Pipeline

(=]

! | Input Reader |
wr

|
z: | Filter |
- I

|
"I| Processor |
w' I

|
n..: | Formatter |

:

|

|

| Output Writer |

Also good for visualizing hardware

Write Back

WB

. Instruction Decode Execute
Instruction Fetch Register Fetch Address Calc. Memory Access
IF ID EX MEM
Next PC
Next SEQ PC Next SEQ PC |
=z
RS1 =
RS2 Branch
Register
File
—-
= o Y.
— — —
o y =
Ll PC . L
N Sign Imm
Extend

aM / INTIN

H

WB Data

10

How do the stages communicate?

* That's the next-level decision
» data-push (each stage invokes the next)

e demand-pull (each stage demands data from its
predecessor)

* queues? buffers?
 This is at the interaction scale (coming up next lesson)

11

Example 4: A Plugin Architecture
("microkernel™)

* Components consist of

* a small core (the "microkernel") for — ——
essential functions, and lots of hooks Comnent | Compnent
for adding other services —

* Plug-ins corresponding to different om0 Coressem [PuER
user functions)

. . Plug-in | -{ Plug-in

¢ H|gh|y eXtenS|b|e Component [—| Component

* Plug-ins can be designed by small,
less-experienced teams— even by
users!

* Connection methods may vary

Analogy: Affordances

* An “affordance” is a property of an
object that enables some operation
to be performed with/on that object

e Eg: zipper handles enable
opening/closing

* Door handles enable opening/closing

e Spouts enable pouring

* In a microkernel architecture, the
core contains affordances for

extension

* These affordances may have many
possible forms

13

Plugin Examples

* Many examples:

* Visual Studio Code (internal org. + extension marketplace)
* emacs (emacs-lisp + hooks)

e git clients

$ 1s .git/hooks
applypatch-msg.sample
commit-msg.sample
fsmonitor-watchman.sample
post-update.sample

pre-applypatch.sample
pre-commit.sample
prepare-commit-msg.sample
pre-push.sample

pre-rebase.sample
pre-receive.sample
update.sample

14

Express.js provides methods for modifying
its built-in actions

const express = require('express' 4.17.2)
const app = express()
const port = 3000

app.get('/', (req, res) => {
res.send('Hello World!")

D)

app.listen(port, () => {
console.log(Example app listening on port ${port}’)
1))

https://expressjs.com/en/starter/hello-world.html

Example 5: Event-Driven Architecture

* Metaphor: a bunch of bureaucrats
shuffling papers

 Components corresEond to stages
in the flow of data through the
system (not necessarily a straight-
line flow)

* Each processing unit has an in-box
and one or more out-boxes

e Each unit takes a task from its
inbox, processes it, and puts the
results in one or more outboxes.

e Stages are typically connected by
asynchronous message queues.

 Conditional flow

i — - Order
,,,,,,,,,,, N-.p GEEED---»| Placement
keiccwe | [PlaceOrder]
Purchasing Book Component
(Initiating Event) v
—>
@
.. [OrdE_r-CfP:ated]
v v
Payment Inventory —> Warehouse

-Component -Component ’ -) """" > -Component
[inventory-updated]

v

v v, v, v,
Notification <.["[;lauy}ment denied] [payment-applied] [inventory-resupplied]
' ; '
I . H
Component D R v
i Order
v P Fulfillment
[email-sent] P Component
v,
P @D [order-fulfilled]
i v
Shipping
Component

R @D [order-shipped] 16

Each piece can have its own architecture

* We can use the same ideas to talk about each piece
of the overall architecture.

* For example, the backend of covey.town (the
subject of our team project) is a layered
architecture. The higher levels (those closest to

the user) are event-driven, but the lower layers are
more object-oriented.

17

Learning Goals for this Lesson

At this point, you should be able to

* Give 5 examples of software architectural styles and
their distinguishing characteristics

* Draw a picture or give an example to illustrate each one

18

	CS 4530: Fundamentals of Software Engineering�Lesson 2.2 The Architectural Scale
	Learning Goals for this Lesson
	The Architectural Scale
	What do we learn at this scale?
	Examples of Architectural Styles
	Example 1: Object-Oriented Architecture
	Example 2: Layered Architecture
	Layered Architecture (contd)
	Example 3: Pipeline Architecture
	Also good for visualizing hardware
	How do the stages communicate?
	Example 4: A Plugin Architecture ("microkernel")
	Analogy: Affordances
	Plugin Examples
	Express.js provides methods for modifying its built-in actions
	Example 5: Event-Driven Architecture
	Each piece can have its own architecture
	Learning Goals for this Lesson

